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Teaching & learning  
mathematics & physics kept separated  

 

A distinction at the research level:  

- mathematicians stay in a universe of ideal logical rigor  

- physicists are users of mathematics  
 

Reflected in 

- physics education: mathematics is a tool to describe and calculate,  

-mathematics education: physics is a domain of application of 
mathematics previously conceived abstractly  
 

To overcome this dichotomy:  

Systematic research in different fields, on historical, philosophical 

and sociological aspects of scientific knowledge 
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History does not verify this separation  

 

 
   less than 100 year-old!  

characterizing development up to the 1960-70s at the peak 
of the effort to extremely formalize mathematics (reflected 
in ME in the “New Math” reform) 

- No clear-cut separation before  

- Recently strong tendency to overcome it 

E.g. 

- “This grand book, the Universe… is written in the language of 
Mathematics” (Galileo 1623) 

- Hilbert’s 6th problem (Hilbert 1900) Mathematical treatment of 
the axioms of physics  

- “The unreasonable effectiveness of mathematics in the natural 
sciences” (Wigner 1960) 
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History in Mathematics & Physics Education:  

promising way to teach & learn  

Mathematics & Physics  

 

 

 

 

In principle, it provides the opportunity to 
appreciate the evolutionary nature of 
scientific knowledge 

 

A worldwide intensively studied area of new 
pedagogical practices & research activities 
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Structure of this talk 

 Part 1: Historical – Epistemological framework 

     Three main theses 
Thesis A:  The ontological status - What is Mathematics? What is Physics? 

Thesis B: The interrelated historical development of Mathematics & 
Physics 

Thesis C: The epistemological affinity of Mathematics & Physics 

Part 2: The History – Pedagogy - Mathematics/Physics 
(HPM/Ph) framework & main issues 

- Which history for didactical purposes? 

- With which role(s)? 

- In which way(s) to be realized in practice? 

Part 3: Illustrative Examples 

1.  Measuring the distance of inaccessible objects 

2.  Rotations, Space-Time & Special Theory of Relativity 

3.  Differential Equations, (Functional) Analysis & Quantum Mechanics  
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 Thesis A: The ontological status - What is Mathematics? What is Physics? 

Mathematics & Physics should be conceived - hence, taught and learnt - both as 

• result of intellectual enterprises  

• procedures leading to these results 

Knowledge in their context has an evolutionary character; by its very nature, 

historicity is a deeply-rooted characteristic 

Perceiving mathematics or physics both as a 

• Logically structured collection of intellectual products and  

• Knowledge-producing endeavours  

should be the core of their teaching and central to their image communicated outside 

Implication for Education: 

     Historical & Epistemological issues in teaching & learning Mathematics & 
Physics: a possible natural way for exposing them in the making, leading to  

• better understanding their specific parts,  

• deeper awareness of what they are as disciplines 
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Thesis B: The interrelated historical development of 

Mathematics & Physics 
 
 

From antiquity to the present, Mathematics & Physics evolve in   

close, continuous, uninterrupted, bidirectional, multifaceted, fruitful way 
 
 

• Hero’s geometrical proof of the law of reflection 

• Eratosthenes’ estimation of the earth’s circumference 

• Archimedes’ “mechanical arguments” in his Method 

• Poincaré’s group theoretic derivation of the Lorentz transformations in SR   

• Hilbert’s deduction of General Relativity field equations from a variational 
principle 

• von Neumann’s rigorous formulation of QM 

• Penrose’s singularity theorems in General Relativity 

• Feynman’s path-integrals in Quantum Mechanics & functional integration 

• Thom’s Catastrophe Theory 

• Connes’ Non-commutative Geometry & Quantum Field Theory 
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 A simplified scheme of 3 scenarios  

 (S1) Parallel development: Physical problems asking for solution & formulation 

of appropriate mathematics (concepts, methods, or theories) evolve in parallel  

• Infinitesimal calculus, Classical Mechanics (17th century) 

• Vector Analysis, Electromagnetism, Fluid Mechanics (19th century) 

• Statistical concepts, error theory in Celestial Mechanics, Kinetic Theory (19th century) 

• 1st order PDE, Geometrical Optics, Classical Mechanics (Hamilton) 

(S2) Mathematical concepts, methods or theories precede their integration into 
physics: The corresponding physical problems naturally stress the need for the 
appropriate mathematics  

• Riemannian Geometry, Tensor Calculus, General Relativity 

• Matrix Algebra, Matrix Mechanics (Heisenberg) 

(S3) Physical problems precede the formulation of mathematics appropriate to 
tackle them: Partially intuitive, formal or experimentally-induced models, and 
logically incomplete, ill-defined concepts, motivate and/or guide the development of 
new mathematics 

• Brownian motion (Langevin), Stochastic differential equations, 

• Dirac’s  δ-function, Distribution theory 

• Path integrals (Feynman), Functional integration   
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Thesis C: The epistemological affinity of Mathematics & 

Physics 
 

C(a): Mathematics & Physics always closely interwoven  
           A bi-directional process:  
 
• From Mathematics to Physics:  

    Mathematics is the language of physics,  

- not only as a tool for expressing, handling and developing logically physical 
concepts, methods and theories,  

- but also as an indispensable, formative characteristic shaping them, by 
deepening, sharpening, and extending their meaning, or even endowing 
them with meaning 

 
• From Physics to Mathematics:  

    Physics is a natural framework  

- not only for testing, applying and elaborating mathematical theories, 
methods and concepts,  

- but also for motivating, stimulating, instigating, creating all kinds of 
mathematical innovations 
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• Maxwell (1856): Natural philosophy is, and ought to be, Mathematics… the 

greatest advances in mathematics have been due to enquirers into physical laws 

 

• Weyl (1922): Geometry, Mechanics, and Physics form an inseparable 

theoretical whole 

 

• Einstein (1934): Experience can… guide us in our choice of serviceable 

mathematical concepts… [and] remains the sole criterion of the serviceablility 
of a mathematical construction for physics, but the truly creative principle 
resides in mathematics 

 

• Wigner (1960): the unreasonable effectiveness of mathematics in the natural 

sciences “…shows that [mathematics] is in a very real sense, the correct 
language…” and its predictions, often in amazing agreement with experiments 
indicate that “surely… we ‘got something out’ of the equations that we did not 
put in” 

 

• Dirac (1979): Anyone who appreciates the fundamental harmony connecting 

the way nature runs, and general mathematical principles, must feel that a 
theory with… beauty and elegance… has to be substantially correct 
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• Hilbert (1902):  

 

“ … while the creative power of pure reason is at work, the outer world … 

comes into play, forces upon us new questions from actual experience, 

opens up new branches of mathematics, and while we seek to conquer these 

new fields of knowledge for the realm of pure thought, we often find the 

answers to old unsolved problems and thus … advance most successfully the 

old theories. … the numerous and surprising analogies and  

that apparently prearranged harmony which the mathematician so 

often perceives in the questions, methods and ideas of the various branches 

of his science, have their origin in this ever-recurring interplay 

between thought and experience …”  

11 



 

 Thesis C: The epistemological affinity of Mathematics & 
Physics 

 

C(b): Mathematics & Physics as embodiments of general attitudes in 

regard to the description, exploration, and understanding of 

empirically and/or mentally conceived objects, 

     are so closely interwoven, that  

    any distinction between them is related more to the point of view      

    adopted while studying particular aspects of an object, than to the   

   object itself 
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• Arnold (1998):  

The scheme of construction of a mathematical theory is 
exactly the same as that in any other natural science 

 

 

• Dirac (1970):  

A theory with mathematical beauty is more likely to be 
correct than an ugly one that fits some experimental data 
 

 

• Weyl (1922):  

My work always tried to unite the true with the beautiful; 
but when I had to choose one or the other I usually chose the 
beautiful 
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Basic educational moral/conclusion from Theses A to C 

 

• By Thesis A, history cannot be ignored in teaching & 

learning of either Mathematics, or Physics 

 

• By Theses B & C, teaching and learning one of them should 

take into account, be supported, or include aspects of the other  

 

• Thesis C gives orientation to motivate, stimulate, support, 

deepen, widen teaching & learning either discipline, specialized 

for particular examples into precise guidelines with the aid and/or 

in the light of Thesis B 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 1. Which history for didactical purposes? 

 

Important (Fried):  

Avoid “Whig” history (i.e. the present not be the measure of 
the past) 

 History should not be forced “…to serve aims not only foreign 
to its own but even antithetical to them” 

 

In this connection 

A useful conceptual pair (Grattan-Guinness):  

History – Heritage 

complementary perspectives of the historical development 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 History: development of knowledge during a particular period: its launch, early 
forms, impact at that period, applications in and/or outside mathematics/physics  

• What happened in the past?  

• Why did it happen?  

• What did not happen in the past and why not? 

False starts, missed opportunities…, sleepers, and repeats noted and maybe 
explained… differences from seemingly similar more modern knowledge 

Heritage: impact of knowledge on later work, the forms it may take/be embodied 
in later contexts. Focus on some of its modern forms, with attention to its 
development… mathematical relationships noted, while historical ones… 
hold less interest 

• How did we get here?  

Modern knowledge is inserted when appropriate, thereby unveiling past 
knowledge  

Similarities with more modern knowledge are emphasized;  

The present photocopied onto the past 

16 



 
Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 
2. With which role(s)?  
2.1 Three mutually complementary roles  
(Barbin, Furinghetti, Jahnke, van Maanen) 

Replacement: Replacing knowledge as usually understood (final 
results; set of techniques; school units for exams etc) by something 
different (deductively organized results, and a vivid intellectual 
activity as well). 

Reorientation: Changing the “familiar”, to something “unfamiliar”; 
by modifying the conventional perception of knowledge as 
something always existing in its current form, into an evolving 
intellectual activity 

Cultural role: Awareness of knowledge as an integral part of human 
intellectual history; hence, perceiving mathematics and/or physics 
from perspectives beyond their currently established boundaries as 
disciplines 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 
2.2 From the viewpoint of the objective of integrating History in 

Mathematics and/or Physics Education  
    (ICMI Study)  

• Learning specific pieces of mathematics and/or physics 

• Views on the nature of mathematics, physics and the associated 

activities 

• The didactical background of teachers and their pedagogical 

repertoire 

• The affective predisposition towards mathematics and physics 

• The appreciation of mathematics & physics as a cultural-human 

endeavour 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 
2.3 From the point of view of the way History is accommodated 

into Education  (Jankvist)  

 

• History as a tool: History as an assisting means, an aid in 
learning & teaching of mathematics or physics;  

    in this sense, history as a motivational, affective, cognitive tool 
 

• History as a goal: History as an aim in itself, posing & 
suggesting answers to questions on the evolution and 
development of mathematics or physics;  

 -  the inner & outer driving forces of this evolution;  

 - cultural & societal aspects of mathematics or physics and their 
history 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 3. In which way(s) to be realized in practice?  

3. 1 Three broad ways to integrate History in Mathematics &   Physics 
Education (ICMI Study)  

    Complementary to each other  

    Each one emphasizing a different aim 

 
• Provide direct historical information, aiming to learn history 

• Implement a teaching approach inspired by history, aiming to 
learn mathematics and/or physics 

• Focus on Mathematics and/or Physics as disciplines and the 
cultural & social context in which they have been evolving, aiming 
to develop deeper awareness of their 

     - evolutionary character,  

     - epistemological characteristics,  

     - relation to other disciplines,  

     - influence by (intrinsic and extrinsic ) factors 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 3. In which way(s) to be realized in practice?  

3. 2 From a methodological point of view (Jankvist) 

Illumination approaches: Teaching & Learning 
supplemented by historical information of varying size & 
emphasis.  

 

Module approaches: Instructional Units devoted to history, 
often based on specific cases     

 

History-based approaches: History shapes the order & way of 
presentation - often without appearing explicitly, but rather 
being - integrated into teaching 
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Part 2: The History – Pedagogy - Mathematics/Physics 

(HPM/Ph) framework & main issues  

 
Comment:  

Approaches may vary in size & scope, according to 

• specific didactical aim,  

• subject matter,  

• level & orientation of the learners,  

• available didactical time,  

• external constraints (curriculum regulations, number of 
learners in a classroom etc) 
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1. Measuring the distance of inaccessible objects 

        Mathematics & Physics in their wider cultural context 

 

2. Rotations, Space-Time & Special Theory of 
Relativity 

         How did we get here? 

 

3. Differential Equations, (Functional) Analysis & 
Quantum Mechanics 

        What did (or did not) happen in the past and why (or 
why not)? 

 

 

 

Part 3: Illustrative Examples 
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• 1.1 Eratosthenes’ measurement of the Earth’s   circumference 

 

• 1.2 Aristarchus’ measurement of the Earth – Sun - Moon 
relative distances 

  

• 1.3 Copernicus’ measurement of inner planets’ relative 
distances from the sun 

  

• 1.4 Trigonometric parallax for measuring:  

    (i) Earth-Sun distance by inner planets’ transits across the 
sun’s disk 

   (ii) Star distances by stellar parallax 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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Rationale  

Mathematically, examples (a)-(d) are elementary 

But 

Emphasis: How elementary geometrical ideas & 

reasoning  

led historically to astronomically & physically non-trivial 

consequences  

with far-reaching cultural implications (didactically 

beneficial) 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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Placement within the general HPM/Ph framework 

Rich example, capable of extension in different directions. E.g. 

• A sufficiently self-contained  interdisciplinary teaching module on: 

    elementary Euclidean geometry, modelling of physical situations,         

    astronomical observations, significance of technically accurate     

    instrumentation, crucial role of approximate computations; 

Or 

• Illuminating examples in high-school or university courses on:  

    Euclidean geometry, trigonometry, geography, history of science & math 
 
• A heritage-like perspective 

• History (mainly) as a goal, 

• with a cultural role 

- bridging mathematics with other subjects, 

- enriching/widening teachers’ didactical repertoire 

- developing students’ awareness: mathematics & natural sciences in 
constant dialogue with societal needs & philosophical queries 

 

 

1. Measuring the distance of inaccessible objects 
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Eratosthenes’ measurement of the Earth’s circumference 
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1.1 Eratosthenes’ measurement of the Earth’s circumference 

 

   Three bold non-mathematical hypotheses: 

• (i) Earth is spherical;  

• (ii) Alexandria and Syene lie on the same meridian;  

• (iii) The sun is so far away that its light rays are 
practically parallel 

 

   Questions like 

• How do we know that the earth is spherical? 

• How do we know that two places lie on the same meridian? 

• How can we check that the sun is really so far away? 

 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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1.2 Aristarchus’ measurement of the Earth – Sun - Moon 
relative distances 

 

 

 

 

 

 

 

Trivial mathematics: cosφ = aM/a 

But 

• Two bold non-mathematical hypotheses:  

• The moon is (i) spherical; (ii) illuminated by the sun 

 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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1.2 Aristarchus’ measurement of the Earth – Sun - Moon 
relative distances 

 

Remarks:  

• (1) How do we know that the moon  

         is spherical; illuminated by the sun? 

 

• (2) Aristarchus’ measurement φo =87o, hence 18< a/aM <20. 

          Actual value: φo  89o52΄ hence 1/cosφ  a/aM  390 

   - limited accuracy of instruments 

   - sensitive dependence of computations on data  

 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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1.3 Copernicus’ measurement of inner planets’ relative   

       distances from the sun 

 

 

 

 

 

 

Trivial mathematics: 

At greatest angular elongation from the sun: aP = a sinθ 

But 

• Two bold non-mathematical hypotheses:  

inner planets revolve around the sun in circular orbits 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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1.3 Copernicus’ measurement of inner planets’ relative   

       distances from the sun 

 

Remarks:  

• (1) What was Copernicus’ motivation of such a bold, 
counter-intuitive assumption? 

• (2) Existence of greatest elongation of the inner planets, 
fitted naturally in Copernicus’ system, but not in Ptolemy’s 

• (3) Discuss Tycho Brahe’s semi-heliocentric system & 
Kepler’s heliocentric system of elliptic orbits 

1. Measuring the distance of inaccessible objects 
Mathematics & Physics in their wider cultural context 
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1.4 Trigonometric parallax 

(i) Earth-Sun distance by inner planets’ transits across sun’s disk 

 

 

 

 

 

 

 

 

 

A bold non-mathematical hypothesis: planet & sun very far away 

Hence, by trivial mathematics: sinφ  φ  AB/PA   (φο<0o.5) 

PA/A’A  PB/B’B known by Copernicus’ method, or Kepler’s 3rd law 
of planetary motions 

 

 

1. Measuring the distance of inaccessible objects 
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1.4 Trigonometric parallax 

          (i) Earth-Sun distance by inner planets’ transits across sun’s disk 

 

Remarks:  

• Earth-sun distance gives meaning to all celestial 
relative distances got by other methods 

• Venus’ transits are rare (110 years). Mercury’s frequent 
(every few years) but less favorable 

• Today we use Modern radar methods directly 
(conceptually simple - technically sophisticated) 

1. Measuring the distance of inaccessible objects 
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1.4 Trigonometric parallax 

(i) Star distances by stellar parallax 

 

 

 

 

 

 

 

 

 

Trivial mathematics: p <1΄΄   hence a  d sinp   

                                            so d = (206,265/p΄΄)AU   (AU  1.49108km) 

 

 

1. Measuring the distance of inaccessible objects 
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1.4 Trigonometric parallax 

(i) Star distances by stellar parallax 

But 

Two bold non-mathematical hypotheses:  

• (i) Earth revolves around the sun;  

• (ii) Faint stars (statistically) far away: A sufficiently immovable 
background   

Remarks: 

• Conceptually simple, but technically sophisticated idea of 
parallax was used by Copernicus’ & Galileo’s Aristotelian 
opponents against earth’s motion; no parallax observed 

• Technically possible measurement of parallax after the 
telescope as late as 1838 (Bessel); a definite experimental test of 
earth’s revolution  

• Other such tests? 

1. Measuring the distance of inaccessible objects 
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Rationale  

• Special Relativity standard for Physics undergraduates 

• Matrix/linear algebra standard for Mathematics/Physics 
undergraduates 

 

- Power of algebra: unification-through-abstraction of 
distinct concrete problems,  

- Undergraduates students meet grave difficulties in studying 
abstract algebraic concepts, because of limited 
mathematical maturity 

- Hence: algebraic concepts should be taught using 
concrete meaningful examples 

 

 
2. Rotations, Space-Time & Special Theory of Relativity 

      How did we get here? 

 

37 



Placement within the general HPM/Ph framework 

Fairly complete account of Special Relativity’s foundations  

Minkowski’s original ideas on space-time, using simple matrix 
algebra 

• (Mainly) a heritage-oriented, illumination approach  

• inspired by & based on history with 

• history  

   - having a re-orientation role  

   - serving mainly as a tool   

• for learning mathematics & physics by  

   - unfolding their interplay  

   - enriching teachers’ didactical repertoire 

 
2. Rotations, Space-Time & Special Theory of Relativity 

     How did we get here? 
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Link innovations in Physics & their mathematical 
formulation, to their modern counterparts:  

thus illuminating how did we get here? 

Key historical elements 

 

 

 
2. Rotations, Space-Time & Special Theory of Relativity 

      How did we get here? 
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Sketch of a possible didactical implementation 
• LT in (x, t)-plane in close analogy with plane rotations in (x, y)-plane: 

Rotations Rφ conserve Euclidean distance x2+y2 

 

 

 

 

LT Lφ conserve Minkowski pseudo-distance x2-c2 t2 (tanhφ = v/c    |v/c|<1) 

 

 

 

 

• Group structure: 

Successive rotations by angles φ, φ΄ rotation by φ+φ΄: RφRφ’  = Rφ+φ’ 

Successive LT by angles φ , φ΄  LT by  φ+φ΄ : LφLφ’= Lφ+φ’ 

 
2. Rotations, Space-Time & Special Theory of Relativity 

     How did we get here? 
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Sketch of a possible didactical implementation 
Hence 

      geometry/matrix algebra:     

  

 

 

  physics:                                                          (relativistic velocity addition)  

 

 

 

 

  algebra:                                                  ( (-1,1],  ) commutative group   

                                                                          x  1 =1,  x = v/c 

 

 
2. Rotations, Space-Time & Special Theory of Relativity 

     How did we get here? 
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Rationale 
Subjects taught to (under)graduates, separately as heterogeneous, often 
unmotivated 

• Jacobi’s method to solve 1st order PDE 

• Hamiltonian formulation of Classical Mechanics  (CM) & Hamilton-Jacobi 
theory 

• Analogy: Fermat’s Least Time Principle (GO) & Maupertuis’ Least Action 
Principle (CM) 

• Schrödinger’s equation  in Quantum Mechanics (QM)  

• Heisenberg’s Matrix Mechanics & infinite dimensional matrices 

• Infinite dimensional linear spaces; (separable) Hilbert spaces 

• Observables in QM as self adjoint operators; their non-commutative algebraic 
structure 

• Fourier analysis, Lebesgue integration, squarely-integrable functions 

Historically strong interconnections that motivated, stimulated, guided 
the development to their current form; beneficial for teaching & learning 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Placement within the general HPM/Ph framework 

  

Vast, rich subject 

 

• A history-based approach, inspired by history 

• History having a replacement role, serving mainly  

   as a tool for 

- learning mathematics & physics  

- enriching teachers’ didactical repertoire  

- amending students’ affective predisposition towards 
abstract/difficult concepts 

Emphasis on a history-oriented approach, to enlighten 
“what and why did/did not happen?” 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Key historical elements 

• 18th century: Maupertuis’ Least Action Principle (CM) motivated by/in 
analogy with Fermat’s Least Time Principle (GO) 

  

• 1830s: Hamilton’s mathematically unified treatment of CM & GO  

    Hamilton-Jacobi method to solve 1st order PDEs    

   powerful new formulation of CM  

 

• Mathematical “isomorphism” CM  GO  

    1924: de Broglie  wave-particle duality (microcosm) 

    1926: Schrödinger  Wave Mechanics 

 

•   1925, Heisenberg: Fourier series operations & atomic spectroscopy’s    

     empirical data  Matrix Mechanics, Heisenberg’s indeterminacy    

     relations  

 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Key historical elements 

• Both Wave Mechanics & Matrix Mechanics  

    compatible with experiment; but  

    conceptually/mathematically completely different! 

  

•   1926, Schrödinger’s formal proof of their equivalence:  

Functions in Wave Mechanics elements of L2(R) with scalar product  

 

Matrices in Matrix Mechanics acting on the infinite-dimensional linear 
space l2 (complex sequences =(1, 2, ...), with k k

2+) 

 

• In an orthonormal basis of L2(R),  

solving Schrödinger’s PDE  (Wave Mechanics)   

solving eigenvalue problem for Hamiltonian matrix (Matrix Mechanics) 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Key historical elements 

• 1927ff, von Neumann: rigorous proof of their equivalence:  

- Identified the algebraic properties of the objects of the two theories,  

- Emphasized the linear structure of the function spaces (L2(R) & l2) 
underlying them 

- Introduced axiomatically the concept of separable Hilbert space 
(two examples being L2(R) & l2) 

- Proved isomorphism of all separable Hilbert spaces 

  

 

   

 
 

3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Sketch of a possible didactical implementation 

 
I. Least Action Principle & Least Time Principle:  

 

• Important examples of variational principles, leading to key results 
in 

 

• Classical Mechanics (Hamilton-Jacobi equation), Geometrical Optics 
(eikonal equation) 

 

• Generic examples to establish: solution of 1st order PDEs equivalent to 
solution of a system of 1st order ODEs the associated canonical 
(Hamilton’s) equations 

 

  

 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Sketch of a possible didactical implementation 

II. From Classical Mechanics to Wave Mechanics: The optical analogy 

  

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Sketch of a possible didactical implementation 

 

• Why Hamilton did not formulate Wave Mechanics? 

 

• Extra condition needed/missing to give meaning to σ 

 

    Crucial idea:  

   de Broglie’s postulated the wave nature of matter by “symmetrising” 

the Planck-Einstein conception of the corpuscular nature of 

radiation 

 

E=hν, p=hk,  (h Planck’s constant)  σ  h 
 

 

 

  

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Sketch of a possible didactical implementation 

III. Heisenberg formulation of matrix mechanics: Reasoning by analogy 

 

 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 

 

50 



Sketch of a possible didactical implementation 

IV. Introducing concepts & results of Functional Analysis  

For instance: 

(i) Present the mathematical problem of Matrix Mechanics & Wave 
Mechanics:  

• to diagonalize the Hamiltonian matrix  in l2,  

• to solve Schrödinger’s PDE equation in L2(R) 

(ii) Naturally ask for the relation of the physically & mathematically a priori 
different theories that yield identical, experimentally correct predictions  

• Give Schrödinger’s heuristic/non-rigorous formal proof of their 
equivalence (l2  L2(R)) 

• Prove rigorously that l2 and L2(R) are isometric Hilbert spaces 

(iii) Reverse the argument and prove the isomorphism of linear spaces with a 

scalar product spanned by a countable ON basis (von Neumann’s approach) 

(iv) Introduce other important concepts/results: bounded vs unbounded 
operators; hermitian as distinct from self-adjoint operators; extension of 
an operator etc 

 
3. Differential Equations, (Functional) Analysis, Quantum Mechanics 

What did (or did not) happen in the past & why (or why not)? 
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Final Comments 

52 

In this talk I tried  

• to look at the innermost relationship of Mathematics & Physics 
considered both from the point of view of their 

    epistemological characteristics; historical development,  
    summarized in three main theses implying (from an educational point of 

view) that this relationship should be taken into account explicitly 

• to address the main issues faced in any such attempt and 

• to describe a common framework for integrating history into teaching & 
learning both disciplines 

• to illustrate these general ideas by three examples of different content and 
orientation  

Hopefully, enough evidence has been presented to support that  

(a) It is impossible to deeply understand either Mathematics or Physics 
without being sufficiently aware of their interconnections and mutual 
influence;  

(b) On the contrary, taking into account their rich interrelation is beneficial 
for teaching & learning either discipline 

 



 

 

THANK YOU 

 

 

for your attention & patience 
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